Statement

Flow Sensor

FR15

Version: 1.2

Issue Date: 2023-11-05

Zhengzhou Winsen Electronic Technology Co., Ltd

This manual copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to let customers use it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes &etc, please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users' comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD

1.Profile:

The FR15 gas flow sensor is specially developed for the medical field. It uses the MEMS thermal principle to flow the vascular gas medium and is suitable for critical ventilators/transport ventilators, etc. The product integrates two types of MEMS flow and temperature sensitive components, and is equipped with gas medium mass flow and medium temperature measurement functions.

Reference Standards:

JJF1234-2018 《Ventilator Calibration Specification》

YY9706.102-2021 《Medical electrical equipment》

GB/T 14710-2009 《Environmental requirements and test methods for medical appliances》

ISO18562-2017 ${\rm \langle\!\!\langle} Biocompatibility assessment of respiratory airways in the medical field {\rm \rangle\!\!\rangle}$

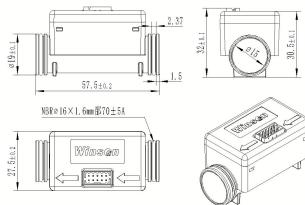
2. Features:

- ♦ High sensitivity, very low start-up flows;
- ♦ High response time;
- ♦ High accuracy and measurement repeatability;
- \diamond Wide range;
- ♦ Biocompatible gas connection material

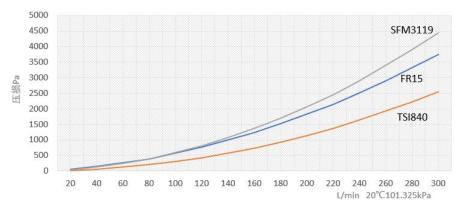
3. Technical specifications

3.1 Technical parameters

	Model No.	FR15
	D	ø15mm
	Maximum flow rate	240L/min @20°C 101.325kPa
Flow	Measurement accuracy	9L/min ~ 240L/min ±2.5% 0 ~ 9L/min ±0.5%FS
measurement	Repeatability	0.5%
	Working temperature	70kPa ~ 107kPa

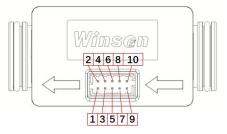

	Burst pressure	≥0.7MPa
	Working temperature	5℃ ~ 55℃
T	Measurement range	- 20°C ~ + 80°C
Temperature		0°C ~ 80°C ±2.5°C
measurement	Measurement accuracy	- 20°C ~ 0°C ±4°C
		Digital IIC and linear analogue
	Output method	voltage
	IIC communication rate	400kHz
Output signal	Digital Signal Refresh Time	≤1ms
	Analogue flow	linearity 0.25V ~ 2V
	Analogue temperature	linearity 0.25V ~ 2V
	Signal Response TimeT $_{10} \sim T_{90}$	≤3ms
	Working voltage	5 V ~ 14V
Electrical	Rated power	< 0.3W
parameters		Sensor: Molex 87831-1041
	Electrical interface	Lead wire: Molex 87832-1010
	Storage temperature	-20℃ ~ 80℃
Others	Pressure losses	< 1800Pa @200L/min 101.325kPa
Others	Measuring medium	Dry, clean, non-corrosive gases
	Weight	22g±1g

* The default flow sensor of our company adopts 20° C 101.325kPa, air calibration, and the production conditions are temperature $22 \pm 2^{\circ}$ C, purified, ($30\% \sim 35\%$) RH environment. If the user has special requirements, it will be calibrated according to the customer's requirements.

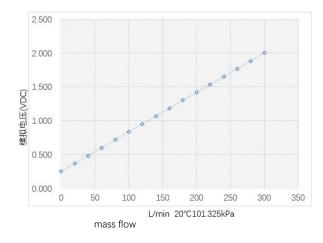

*- %FS refers to full scale accuracy, % is reading accuracy.

Wins₢n ^{炸盛科技}

3.2 Structural parameters



3.3Flow and pressure loss curves


3.4 Interface definition

The built-in connector of the sensor is Molex 87831-1041, and the specific signals are defined in the table below:

PIN1	V(Flow)	PIN2	GND
PIN3	V(Temp)	PIN4	GND
PIN5	IIC_SCL	PIN6	IIC_SDA
PIN7	NC	PIN8	VCC
PIN9	GND	PIN10	NC

3.5Analogue signal output and calculation

4 IIC Communications

4.1 IIC Connections

This sensor adopts the standard IIC communication protocol, using the serial data bus (SDA) and serial time bus (SCL). The recommended pull-up resistor is 4.7k Ω .

4.2 IIC address

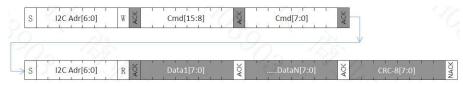
The default address is 0x40, followed by 1 bit of read (1) or write (0) data bit.

4.3 IIC communications

Transmission start signal (S) - When the clock line SCL is high, the data line SDA has a falling edge from high to low.

Transmission stop signal (P) - When the clock line SCL is high, the data line SDA has a rising edge from low to high.

Acknowledge (ACK) - SCL sends a positive pulse while SDA is low.


Non-Acknowledge (NACK) - SCL sends a positive pulse while SDA is high.

4.4 Command set and data transfer sequence

Comman	Return/Write	Command	Remark
d code	Number of bytes (bytes)	description	
0x1000	5	traffic	read instantaneous flow
		collection	value

4.5 Communication timing

4.5.1 Flow rate collection

Datasheets:

Data1	Current flow rate	HEX,
Data2	Measured value	High byte first
Data3	Current temperature	HEX,
Data4	Measured value	High byte first
Data5	CRC-8	Calibration value

Conversion factor table:

Medium Type	Conversion factor	Offset
Air	140	20000

Oxidation	142	20000	
Other gas			

4.5.2Digital Flow Calculation:

 $Flow rate(L/min) = \frac{Flow measurement value - offset}{Conversion factor}$

4.5.3Digital temperature calculation:

T(°C)= ((Data3*256+Data4)-500) /10

4.6 CRC check

CRC check uses CRC-8, the initial value is 0x00, The polynomial is0x131(x8 +

x5 + x4 + 1), The sample code is as follows:

//function name: Calc_CRC8

//functionality : CRC8 calculate, initial value: 0x00, polynomial: 0x131(x8 + x5 + x4 + 1)

//parametric : unsigned char *data: CRC Checking array pointers

// unsigned char num: CRC Check Data Length

//return : crc: calculated CRC8 value

unsigned char Calc_CRC8(unsigned char *data, unsigned char num)

{

unsigned char bit, byte, crc = 0x00;

for(byte = 0; byte < num; byte++)

{

crc ^= data[byte];

for(bit = 8; bit > 0; --bit)

```
{
```

}

if(crc & 0x80)

 $crc = (crc << 1)^{0x131};$

else

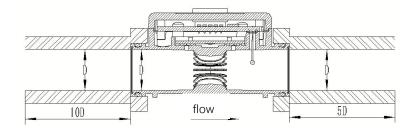
crc = (crc << 1);

Wins@n 炸盛科技

return crc;

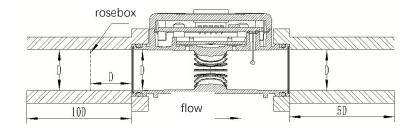
5. Install and use

}

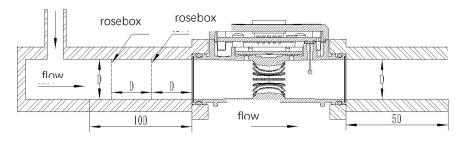

Due to the low pressure drop across the sensor, the flow is not fully regulated by the sensor itself. The piping leading to the sensor will also affect the airflow distribution through the sensor, and the measurement results will be affected accordingly. In order to obtain the best measurement performance, it is recommended to configure laminar flow as much as possible. Details as follows:

5.1 The gas used must be purified to avoid dust, liquid, and oil. If necessary, a filter device can be installed in the air inlet end of the gas path.

5.2 The operating pressure of the medium should not exceed 2 times the maximum operating pressure of the product.


5.3 In order to ensure the measurement accuracy of the sensor in the application scenario, it is recommended to install it as follows.

5.3.1 For silicone hose connections: For silicone hoses with an internal diameter of \emptyset 15, it is recommended that the inlet end be connected to a rigid adapter tube as shown in the diagram



5.3.2 For occasions where the installation space is insufficient, rectification

measures or filters can be added inside the rigid piping at the inlet end as shown in the diagram to adjust the airflow distribution, applicable to fan-driven pipe network

5.3.3 For ventilators and other compact space occasions, the structure of the airway at the inlet end can be adjusted as shown in the diagram to adjust the airflow distribution

6.Fault Diagnosis

6.1 Preliminary inspection

6.1.1 Check the opening of air source and inlet.

6.1.2 Ensure the correct connection of communication lines.

6.1.3 Check whether the medium pressure and ambient temperature meet the product technical indicators.

Wins**⊘n** 炸盛科技

6.2	Troubleshooting		
No	Fault phenomenon	Possible reasons	processing method
		Sensor damage	Repair
1	No signal output or non-zero fixed output when not ventilated	Wire sequence error	Check that the terminals are plugged in correctly
2	No signal change during ventilation	Sensors reversed Wire sequence error	Replacement of mounting direction Check that the terminals are plugged in correctly
		Sensor damage	Repair
	The sensor responds normally during aeration, but shows a specific pattern of deviation from the reference meter.	Inconsistent reference standards	Troubleshooting and converting units of measure used by reference instruments and sensors
3	The sensor reacts normally during aeration, the signal has a large irregular beat, but the average value of the sampled signal is close to that of the reference instrument over a period of time.	Turbulence in installation piping	Increase the signal integration time Or refer to 5.3 Optimising pipework
	Sensor responds normally during aeration, but with large negative deviations	Jet stream in line to sensor	Refer to 5.3.3 Optimisation of pipework Or ask the manufacturer to analyse the solution

period of time screen layers or mesh)

7.Disclaimer

Our company is not responsible for the damage caused by the following circumstances:

- Natural disasters.
- Misoperation or unreasonable use.
- Operate or store in unsuitable or harsh environment.
- Unauthorized modification or disassembly of products.
- Violent means lead to product damage.